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Failure of Cross-Rolled Beryllium Plates 
due to a Point Load 

P.N. Roschke and E. Mascorro 

Failure prediction of cross-rolled beryllium SR-200 sheets loaded in a complex state of stress was demon- 
strated by means of the Tsai-Wu failure theory. A total of sixteen beryllium plates, 2.54 mm thick with 
various length-to-width ratios and support conditions, were tested in the laboratory with a central trans- 
verse point load. Finite-element analyses of the plates were coupled with the failure prediction theory. 
Prediction of failure from numerical simulation was compared with strain gage and displacement 
transducer measurements. Analysis of the load history of the specimens revealed a primary and an ulti- 
mate failure load. Ultimate failure of a fully clamped plate caused an unusual delamination phenomenon, 
whereby a circular region displaced in the direction of the load, but did not separate from the plate. 
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1. Introduction 

THIN beryllium sheets are known to fail in a brittle manner 
when deformed by out-of-plane loadings. The brittle character 
of  beryllium sheet material that is loaded in a complex state of 
stress can lead to unexpected modes of failure. Prediction of 
such events is especially important for structures that are to be 
launched into space. Orbit-bound spacecraft such as the shuttle 
carry payloads and satellites made of  beryllium that undergo a 
variety of  static and dynamic loadings. Space flight agencies 
are committed to safety of  the crew and machinery, and would 
benefit from the ability to predict loading conditions under 
which these structural elements can be expected to fail. 

Toward this end, the Tsai-Wu failure theory (Ref 1) has been 
recently applied to cross-rolled SR-200 beryllium sheet (Ref 2- 
4). A series of  laboratory experiments led to a determination of  
coefficients for the scalar prediction equation. The current 
work validated the failure criterion by experimentally testing a 
series of plates. The study was designed to add to the existing 
experimental database for beryllium sheet material, as well as 
to improve prediction of  failure for a material that behaves in an 
unusual manner when loaded under a complex state of  stress. 
(The approach taken is independent of micromechanical prop- 
erties; therefore, no micrographs were taken during the investi- 
gation.) 

f(Ok) = Fio i + Fijoio j = I (Eq 1) 

where F i and Fij are experimentally determined constants that 
are unique to a given material, and o i is a contracted form of the 
second-order stress tensor oij. For orthotropic material in plane 
stress, Eq 1 has the following contracted tensor form (Ref 1): 

F 1 l'-'x'*'2 7-• F22,.,y~2 + F6602y + 2F120xGy + F lOx  + F2Gy = 1 

(Eq 2) 

where 0 x, ay, and Oxy are normal and shear stresses, respec- 
tively, that are aligned with the principal axes of the material. 
This formulation takes into account the interdependence of 
combined states of  stress. The difference between positive and 
negative stress-induced failures is accounted for by the linear 
terms. Quadratic terms of  the criterion describe an ellipsoid in 
the stress space. 

Determination of  principal strength coefficients F 1, F 2, F l l, 
and F22 of  beryllium sheet requires that the ultimate uniaxial 
tensile and compressive stresses in the longitudinal and trans- 
verse in-plane directions be known. If the longitudinal material 
direction is designated as the "1"  axis,  F 1 and Fll can be deter- 
mined from Eq 2: 

1 1 
F 1 = - -  + - -  (Eq 3) 

0 t o c 

-1 
2. Failure Theory F11 = (Eq 4) 

Oto  e 

A general approach to failure prediction of  anisotropic ma- 
terial has been presented by Tsai and Wu (Ref 1), who proposed 
the following tensor formulation to define the failure surface: 
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where 0 t and 0 c are ultimate tensile and compressive stresses, 
respectively, for a uniaxial load in the longitudinal direction 
(Ref 1). An interchange of  subscripts in these equations leads to 
calculation of  F 2 and F22 from ultimate stresses in the trans- 
verse direction. The biaxial stress coefficient, F12, is computed 
as:  
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Fig. 1 Contours of failure stresses for SR-200 beryllium sheet 

Table 1 Tsai-Wu failure coefficients 

Coefficient Numerical value 

F l 3.38 • 10 -10  P a - I  
F 2 3.28 x 10 -10 Pa  -1 
Fit  2 .84 • 10 -18 Pa  -2  
F22 2 .57 x 10 -18 P a  -2  
F66 1.08 x 10 -17 P a  - 2  
Fl2 - - 2 . 3 8 x  10 -18 P a - 2  

[1 - (~b(Fl + F2) - o2(Fll + F22)] 
F12 = 20 2 (Eq 5) 

where 0 b is the biaxial failure stress for 0 x = Oy. The pure shear 
coefficient, F66, is determined from: 

[4 - oo(F 1 + F2) - 602(Fll + F22 + 2F12)] 
F66 = G8 (Eq 6) 

where o 0 is the failure stress obtained from an experiment in 
which a specimen is cut at a 45 ~ angle from the principal mate- 
rial directions of a beryllium sheet (Ref 3). 

As mentioned earlier, a series of  laboratory experiments was 
carried out to determine o t, o c, o b, and o 0 and, therefore, the F i 
and Fi~ coefficients for the Tsai-Wu prediction equations (Ref 3, 
4). Using results of  these tests in conjunction with Eq 3 to 6 led 
to the coefficients for SR-200 beryllium sheet shown in Table 
1. 

Substituting these coefficients into Eq 2 and selecting three 
discrete values of in-plane shearing stress produced the con- 
tours of Fig. 1, which is a two-dimensional representation of 
the three-dimensional failure surface. Each contour represents 
a failure envelope for o 1 and 0 2 stresses corresponding to a 
specified value of  in-plane shear stress (06). The curves are 
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Fig. 2 Clamped-free test arrangement 

nearly symmetrical about the G 1 = O 2 line. For example, if an 
in-plane shear stress of 276 MPa exists, then the material is pre- 
dicted not to fail if the magnitudes of  the 01 and O 2 stresses lie 
inside the 276 MPa contour. 

3. Experimental  Method 

Verification of the Tsai-Wu criterion was performed by 
laboratory testing of a series of  beryllium plates subjected to a 
central concentrated load. A total of 16 plates were tested, each 
having a thickness of  2.54 mm and various length-to-width ra- 
tios and support conditions. As summarized in Table 2, length 
and width dimensions of  the specimens varied from 25.4 by 
25.4 mm to 101.6 by 101.6 mm in 25.4 mm increments. All 
specimen dimensions listed in Table 2 are from support to sup- 
port. Each plate was cut from an SR-200 beryllium sheet and 
chemically etched 0.0076 mm on each side to remove surface 
flaws. 

Actual dimensions for clamped-clamped plates (specimens 
1 to 14) were 50.8 mm longer in the transverse.direction and 
38.1 mm longer in the longitudinal direction. The extra area 
was used to grip the plate. Each specimen was clamped on all 
four edges, with two exceptions: a 63.5 by 76.2 mm specimen 
and a 63.5 by 101.6 mm specimen were clamped on two oppo- 
site edges and were free on the remaining two edges. For the 
clamped-free plates (specimens 15 and 16), only the dimension 
in the transverse direction was 50.8 mm longer. 

Boundary support conditions were achieved using a spe- 
cially designed fixture. An exploded view of  the method of  
mounting a clamped-free specimen is shown in Fig. 2. Each 
plate was sandwiched between four (clamped-free) or eight 
(clamped-clamped) steel supports that, in turn, were mounted 
on top of  a 19.1 by 152.4 by 203.2 mm steel base plate. A point 
load was imposed by a steel rod with a rounded end. The rod 
was hardened to a 50/55 HRC rating. The tip of  the rod had a 
semispherical end radius of  3.175 mm. 

Each plate specimen was mounted in the test fixture and 
loaded with a universal testing machine via the loading rod 
(Fig. 2). Deflection of the center of  each plate was measured 
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Table 2 Dimensions and edge conditions of plate bending specimens 

Specimen Thickness, Longitudinal clear span, Transverse clear span, 
No. mm mm mm Edge condition 

1 2.46 25.4 25.4 Clamped 
2 2.54 25.4 50.8 Clamped 
3 2.54 50.8 25.4 Clamped 
4 2.49 50.8 50.8 Clamped 
5 2.57 50.8 76.2 Clamped 
6 2.57 50.8 101.6 Clamped 
7 2.59 76.2 25.4 Clamped 
8 2.57 76.2 50.8 Clamped 
9 2.46 76.2 76.2 Clamped 
l0 2.59 76.2 101.6 Clamped 
11 2.57 101.6 25.4 Clamped 
12 2.57 101.6 50.8 Clamped 
13 2.57 101.6 76.2 Clamped 
14 2.49 101.6 101.6 Clamped 
15 2.54 63.5 76.2 Clamped-free 
16 2.57 63.5 101.6 Clamped-free 

relative to one corner o f  the plate with the aid of  a linear vari- 
able differential transformer (LVDT) with a range of  +2.54 mm 
(see Fig. 3). This measurement was taken as the total center de- 
flection. The LVDT was attached to the loading rod by means 
of  a wooden block. One end of  the LVDT movable rod was po- 
sitioned in one comer  of  the plate. Strain was measured with 
standard foil gages. As an example, placement of  strain gages 
on the bottom of  specimen 10 is shown in Fig. 4. Transducers 
from a load cell, the LVDT, and strain gages were connected to 
a data acquisition system. The rate of  loading was approxi- 
mately 8.2 N/s. All  specimens were tested at a room tempera- 
ture of  22 ~ 

4. Results 

Analysis of  the load history for each specimen, with the ex- 
ception of  the two clamped-free specimens, revealed two inci- 
dents of  load redistribution. For example, curves of  load versus 

center deflection for specimens 4 and 9 are given in Fig. 5. Each 
plate exhibited a primary failure followed by an ultimate failure 
at a load that was approximately 50% greater than the primary 
failure. 

4.1 Primary Failure of Fully Clamped Specimens 

Primary failure is recognized by an audible sound, a sudden 
increase in displacement, and failure of  the strain gage immedi- 
ately beneath the concentrated load. Figures 6 and 7 show load 
versus deflection and load versus strain, respectively, for speci- 
men 10 up to primary failure. For  ease of comparison, results of  
numerical simulation are also shown. The primary failure for 
each fully clamped plate was due to a maximum tensile stress 
that occurred directly under the location of  the point load. After 
initial failure the specimen had a number of cracks that were 
manifested by dye penetrant (Fig. 8). These cracks radiated 
from the center of the plate on the opposite side of  the point of  
contact. 
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Fig.  5 Load versus  center  def lect ion for spec imens  4 and 9 Fig.  6 Load  versus  center  deflect ion for spec imen  10 

Fig. 7 Load versus  normal  strain for spec imen 10 

Fig. 8 
failure 

Bo t tom of  spec imen 8 with dye penet rant  after pr imary 

Table 3 Primary and ultimate failure loads for plate specimens 

Specimen Primary failure load, Numerical failure load, Error, Ultimate failure load, 
No. kN kN % kN 

1 2.624 2.793 -6.4 ... 
2 2.446 2.776 -13.5 5.293 
3 2.891 2.882 0.3 5.604 
4 2.357 2.331 1.1 4.101 
5 2.758 2.580 6.5 3.968 
6 2.491 2.430 2.5 ... 
7 2.802 2.962 -5.7 5.382 
8 2.491 2.642 -6.1 ... 
9 2.157 2.135 1.0 3.425 
10 2:446 2.411 1.5 ... 
11 2.580 2.887 -11.9 4.448 
12 2.535 2.522 0.5 4.848 
13 2.446 2.371 0.9 ... 
14 2.135 2.233 -4.6 ... 
15 2.402 2.371 -1.3 ... 
16 2.402 2.148 -10.6 ... 

J ou rna l  o f  Mate r i a l s  E n g i n e e r i n g  and  P e r f o r m a n c e  V o l u m e  4(3)  J u n e  1 9 9 5 - - 3 1 7  



(a) 

Fig. 9 Specimen 9 after ultimate failure. (a) Top. (b) Bottom. 

(b) 

Fig. 10 Load versus center deflection for specimens 2 and 5 af- 
ter primary failure 

Fig. 11 Load versus center deflection for clamped-free speci- 
mens 

To improve understanding of  the different failure mecha- 
nisms, plates 2, 5, 6, 7, and 11 were loaded to primary failure, 
unloaded, and reloaded in stroke control to ultimate failure. 
Plates 1, 8, 10, 13, and 14 were loaded only to primary failure. 
Plates 3, 4, 9, 12, 15, and 16 were simply loaded to failure in 
load control. Table 3 summarizes primary and ultimate failure 
loads, where available, for each plate. 

Graphs of  load versus center deflection for all plates were 
linear up to the primary failure and showed an abrupt increase 
in deflection immediately afterward (Fig. 6). The load versus 
normal strain curves for gages not located under the point load 
were very nearly linear (Fig. 4 and 7). Graphs of  load versus 
normal strain for the gage placed directly under the steel rod 
were nonlinear after approximately 70% of the primary failure 
load was reached. This nonlinearity was investigated by load- 
ing specimens 5 and 10 to a load level that was slightly below 
the primary failure load, unloading, and reloading (Fig. 7). The 

gage at the center of each plate showed residual strain. This 
strain was likely due to microcracking of  the material or local- 
ized yielding due to the point loading on the opposite side. 

4.2 Postprimary Failure of Fully Clamped Specimens 

At ultimate failure, a nearly circular region of  the material 
displaced in the direction of  the load and fractured into a set of  
pie-shaped wedges (Fig. 9). The wedges, usually numbering 
four or five, remained partially attached to the plate along the 
periphery of  the circular region. Also, close inspection of  the 
specimens revealed delaminations of  beryllium along the cir- 
cular edge of  the opening. 

Specimens 2, 5, 6, 7, and 11 were loaded to primary failure 
and unloaded to zero. The testing machine was then switched 
from load to stroke control. Each plate was reloaded at a rate of  
0.0085 mm/s to its ultimate load. Figure 10 shows the postpri- 
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Fig. 12 Clamped-free specimen 16 after failure 

Fig. 13 Finite-element mesh for specimen 14 

Fig. 14 Contours of vertical displacement for specimen 14 

mary failure load versus center deflection for specimens 2 and 
5. After ultimate failure, each plate exhibited a residual strength 
of approximately 2 kN before complete penetration by the 
loading rod. 

Fig. 15 
men 14 

Normal strain versus distance from center for speci- 

4.3 Failure of Clamped-Free Specimens 

The clamped-free plates (specimens 15 and 16) were fixed 
along the width dimension. As indicated in Fig. 11, curves of 
load versus center deflection were essentially linear up to fail- 
ure. Curves of load versus normal strain for the gages were 
similar to those obtained from fully clamped plates. Normal 
strain directly under the load was linear up to approximately 
70% of the failure load and then became nonlinear. The rela- 
tionship of the load versus strain curves for off-center gages 
placed on specimens 15 and 16 was entirely linear. Both of 
these specimens failed at a load of 2.4 kN. Unlike the totally 
clamped plates, there was no distinction between primary and 
ultimate failure; both occurred simultaneously. 

After failure, both plates exhibited three distinct lines of 
fracture (Fig. 12). Unlike the clamped-clamped plates, no cir- 
cular delamination region was evident. Parallel lines of fracture 
were located along the supports and at the center. Specimen 15 
had a similar appearance. 

5. Numerical Simulation 

Loading and response of each specimen were numerically 
modeled using linear, elastic finite-element analysis (FEA). 
The geometrical model of each plate was developed with PA- 
TRAN PLUS (Ref 5). Orthotropic material properties for SR- 
200 sheet are listed in Table 4. Because there was geometrical 
and loading symmetry along two axes, only one quadrant of 
each plate was modeled. Theoretical clamped-edge conditions 
of no displacement and no rotation were not experimentally 
achievable. In order to accurately simulate the edge conditions 
applied to the plates in the laboratory, three-noded beam ele- 
ments were placed along the support edges of each plate (Ref 3) 
(Fig. 13). Stiffness of these beam elements was adjusted so that 
the deflection at the center of the plate as predicted by numeri- 
cal simulation matched the deflection obtained from the LVDT 
during the experiment. 

Load was applied using a uniformly distributed pressure on 
the face of the four elements located under the point of loading. 
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Table 4 Mechanical properties of  cross-rolled beryll ium for tensile loading 

Young's modulus, Yield stress, Failure stress, 
Direction GPa MPa MPa 

Poisson's ratio 
Short 

Longitudinal Transverse transverse 

Longitudinal 298.5 383.1 537.4 ... 0.0768 0.0137 
Transverse 293.4 385.8 563.6 0.0752 0.0190 
Short transverse 347.3 ... 199.8 0.0162 0.0230 ... 

Source: Ref6 

The contact pressure was approximated by distributing one- 
half of  the load on the element directly under the center of  the 
indentor. The other half of  the load was distributed over the 
three elements adjacent to the centermost element. Total area of  
contact was 1.032 mm 2. The assumed distribution of  pressure 
was from the solution of  two bodies in contact, as presented by 
Timoshenko (Ref 7). 

Clamped-free specimens 15 and 16 were modeled identi- 
cally to specimens 1 to 14, except that the edge beam elements 
were not used along the free edges. 

After the mesh geometry, material properties, loads, and 
boundary conditions were developed in PATRAN, they were 
translated into a file with a format compatible with ABAQUS 
(Ref 8). Approximately 250 quadratic plate elements having 
eight nodes, reduced integration, and five degrees of  freedom 
per node simulated each specimen. The finite elements were 
doubly curved isoparametric shells that included effects of 
transverse shear. Finally, results of  the analysis were output to 
PATRAN for postprocessing. Figure 14 shows results from the 
numerical simulation of  specimen 14, a clamped-clamped 
square plate. This contour plot shows out-of-plane displace- 
ment for one quadrant of  the plate at the predicted failure load 
of  2.23 kN. Contours form nearly concentric circles with the 
center of each circle located at the point of  loading. 

A graph of normal strain in the transverse material direction 
versus distance from the center of  the plate (see Fig. 15) al- 
lowed comparison of  numerical and experimental results at two 
levels of load for specimen 14. Excellent agreement was shown 
for a load that was approximately one-half of  the primary fail- 
ure load. Furthermore, agreement was also very good at the pri- 
mary failure load for all gages, except at the center of  the plate. 
Lack of  correlation was a result of  localized plastic strain or mi- 
crocracking that was reported by the gage at this location but 
not simulated by the linear material model used in the FEA. 

Predictions of  stress levels were available from FEA at all 
integration points within the plate. For a given increment of  
load, the stresses in the material were substituted into Eq 2 at 
each integration point. If  stresses at all locations in the structure 
rendered the left side o fEq  2 less than unity, the component was 
predicted not to fail. In this case the load was increased and the 
process repeated until the failure criterion was satisfied at at 
least one point in the continuum. Results of  the simulation are 
shown in Table 3 for facile comparison with experimental val- 
ues. Although deviation between some of  the load magnitudes 

is evident, predicted failure loads are generally in good agree- 
ment with experimental failure loads. 

6. Conclusion 

With the exception of  a highly localized area under the point 
of loading, the load-deflection and load-strain response of  the 
SR-200 beryllium plates to a point load was linear prior to pri- 
mary failure. Plates that were clamped on all four sides under- 
went three important events while responding to a concentrated 
point load. Primary failure was a brittle phenomenon that oc- 
curred at a load level that was approximately one-half of  the ul- 
timate load. Following ultimate failure, the specimen 
manifested a residual strength that was a result of  delamination 
of the sheet material in a circular region surrounding the inden- 
tor. Clamped-free plates failed without warning in a brittle 
manner when undergoing an out-of-plane load. 
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